Fe-Ga-Ni (Iron-Gallium-Nickel)

V. Raghavan

Recently, [2008Duc] determined the phase equilibria among the face-centered cubic (fcc) and the ordered and disordered forms of body-centered cubic (bcc) phases in this system.

Binary Systems

The Fe-Ga phase diagram [2004Oka, Massalski2] has the following intermediate phases: α' (B2, CsCl-type cubic), α'' (D0₃, BiF₃-type cubic), βFe₃Ga (D0₁₉, Ni₃Sn-type hexagonal), αFe₃Ga (L1₂, AuCu₃-type cubic), βFe₆Ga₅ (Al₈Cr₅type rhombohedral), $\alpha Fe_6Ga_5(Fe_6Ge_5-type monoclinic),$ Fe₃Ga₄ (monoclinic) and FeGa₃ (CoGa₃-type tetragonal). In the Fe-Ni phase diagram, a continuous face-centered cubic solid solution (denoted γ) forms between γ Fe and Ni and is stable over a wide range of temperature. At 517 °C, an ordered phase FeNi₃ (L1₂, AuCu₃-type cubic) forms congruently from γ . The Ga-Ni phase diagram [2007Duc, Massalski2] shows the following intermediate phases: Ga₄Ni (D8₂, Cu₅Zn₈-type cubic), Ga₃Ni₂ (D5₁₃, Ni₂Al₃type hexagonal), β (42-69.4 at.% Ni; B2, CsCl-type cubic), Ga_2Ni_3 (denoted ε), Ga_7Ni_{13} (62.5-65 at.% Ni; $B8_1$, NiAstype hexagonal), Ga₃Ni₅ (denoted δ; Ga₃Pt₅-type orthorhombic), and GaNi₃ ($L1_2$, AuCu₃-type cubic, denoted γ').

Ternary Phase Equilibria

Partial isothermal sections at 1200, 1000, and 800 °C depicting the fcc-*B*2 equilibrium were determined by [2007Oik]. Extending this work, [2008Duc] used starting metals of 99.9% Fe, 99.9999% Ga, and 99.9% Ni to prepare diffusion couples and triples. Initially, a diffusion couple was prepared between Fe and Ni and given a diffusion-anneal to

Fig. 1 Fe-Ga-Ni isothermal section at 1000 °C [2008Duc]

form a continuous diffusion zone. Holes were drilled near the diffusion zone to insert Ga chips. The final anneal of the diffusion triple was done at 1000, 900, and 850 °C for annealing times of 10-96 h. Microstructural analysis was done in the back scattering electron mode in the scanning electron microscope and the local composition was determined by electron probe microanalysis. The isothermal sections for Ga-lean alloys constructed by [2008Duc] at 1000, 900, and 850 °C are shown in Fig. 1-3. The phase distribution is similar at all the three temperatures. The fccbcc or fcc-*B*2 two-phase region narrows, on moving towards the Fe corner. The $L1_2$ (Ni₃Ga) phase dissolves 14-18 at.% Fe. The Ni-Ga binary phase Ni₁₃Ga₇ indicated in Fig. 2 and 3 has very limited extension into the ternary region.

[2008Duc] constructed two partial vertical sections between 600 and 1100 °C along the Ni₃Ga-Fe₃Ga line and at a constant Ni content of 50 at.%, respectively. These are shown in Fig. 4 and 5. In Fig. 4, the $B2 \leftrightarrow L2_1$ second-order transition temperature increases slightly with

Fig. 2 Fe-Ga-Ni isothermal section at 900 °C [2008Duc]

Fig. 3 Fe-Ga-Ni isothermal section at 850 °C [2008Duc]

Fig. 4 Fe-Ga-Ni partial vertical section along the Ni_3Ga -Fe₃Ga join [2008Duc]

increasing Ni content. In Fig. 5, the solubility of Ga in fcc (γ) decreases with decreasing temperature. The solubility of Ga in the *B*2 (β) phase is almost independent of temperature [2008Duc, 2004Omo].

References

- 2004Oka: H. Okamoto, Fe-Ga (Iron-Gallium), J. Phase Equilb. Diffus., 2004, 25(1), p 100
- 2004Omo: T. Omori, N. Kamiya, Y. Sutou, K. Oikawa, R. Kainuma, and K. Ishida, Phase Transformations in Ni-Ga-Fe

Fig. 5 Fe-Ga-Ni partial vertical section at 50 atomic percent Ni [2008Duc]

Ferromagnetic Shape Memory Alloys, *Mater. Sci. Eng. A*, 2004, A378, p 403-408

- 2007Duc: R. Ducher, R. Kainuma, and K. Ishida, Phase Equilibia in the Ni-Rich Portion of the Ni-Ga Binary System, *Intermetallics*, 2007, **15**(2), p 148-153
- 2007Oik: K. Oikawa, T. Omori, Y. Sutou, H. Morito, R. Kainuma, and K. Ishida, Phase Equilibra and Phase Transition of the Ni-Fe-Ga Ferromagnetic Shape Memory Alloy System, *Metall. Mater. Trans. A*, 2007, 38A, p 767-776
- 2008Duc: R. Ducher, R. Kainuma, and K. Ishida, Phase Equilibria in the Ni-Fe-Ga System., J. Alloys Compd., 2008, 463, p 213-219